
JTRS-5000API
LLC Building Block

rev. 3.0

Application Program Interface Supplement
to the

Software Communications Architecture Specification

APPENDIX G

Logical Link Control (LLC)
Building Block Service Definition

JTRS-5000API
LLC Building Block

rev. 3.0
Revision Summary
1.0 Initial Release
2.2.1 Document numbering change for consistency with SCA main document numbering.
3.0 No change.

JTRS-5000API
LLC Building Block

rev. 3.0

Table of Contents

G.1 INTRODUCTION...G-1
G.1.1 OVERVIEW. ...G-1
G.1.2 SERVICE LAYER DESCRIPTION..G-1
G.1.3 MODES OF SERVICE..G-1

G.1.3.1 Connection Oriented. ..G-2
G.1.3.2 Connectionless Mode. ...G-3
G.1.3.3 Acknowledged Connectionless Mode...G-3

G.1.4 SERVICE STATES. ..G-3
G.1.5 REFERENCED DOCUMENTS. ...G-4

G.2 UUID...G-5

G.3 SERVICES...G-5
G.3.1 LOCAL MANAGEMENT SERVICES...G-5

G.3.1.1 Information Reporting Service..G-5
G.3.1.2 Bind Service. ...G-6

G.4 SERVICE PRIMITIVES..G-9
G.4.1 LOCAL MANAGEMENT SERVICE PRIMITIVES. ..G-10

G.4.1.1 PPA Initialization/De-initialization...G-13
G.4.1.2 Stream Connection. ...G-14
G.4.1.3 DL_MAX_SDU_REQ. ...G-17
G.4.1.4 DL_MIN_SDU_REQ..G-17
G.4.1.5 DL_INFO_REQ. ...G-19
G.4.1.6 DL_BIND_REQ..G-21
G.4.1.7 DL_UNBIND_REQ. ...G-26
G.4.1.8 DL_SUBS_BIND_REQ..G-27
G.4.1.9 DL_SUBS_UNBIND_REQ. ...G-29
G.4.1.10 DL_ENABMULTI_REQ. ...G-30
G.4.1.11 DL_DISABMULTI_REQ...G-32
G.4.1.12 DL_PROMISCON_REQ. ...G-33
G.4.1.13 DL_PROMISCOFF_REQ...G-35

G.4.2 CONNECTIONLESS MODE SERVICE PRIMITIVES.G-37
G.4.2.1 DL_UNITDATA_REQUEST...G-39
G.4.2.2 DL_UNITDATA_IND..G-42
G.4.2.3 DL_UDERROR_IND. ..G-44

G.4.3 ACKNOWLEDGED CONNECTIONLESS-MODE SERVICE PRIMITIVES. ..G-45
G.4.3.1 DL_DATA_ACK_REQ. ...G-47
G.4.3.2 DL_DATA_ACK_IND...G-50
G.4.3.3 DL_DATA_ACK_STATUS_IND..G-52
G.4.3.4 DL_REPLY_REQ...G-53
G.4.3.5 DL_REPLY_IND..G-56
G.4.3.6 DL_REPLY_STATUS_IND...G-58

 i

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.7 DL_REPLY_UPDATE_REQ. ..G-60
G.4.3.8 DL_REPLY_UPDATE_STATUS_IND...G-62

G.5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.G-63

G.6 PRECEDENCE OF SERVICE PRIMITIVES...G-63

G.7 SERVICE USER GUIDELINES. ..G-63

G.8 SERVICE PROVIDER-SPECIFIC INFORMATION. ...G-63

G.9 IDL..G-64

G.10 UML..G-72

 ii

JTRS-5000API
LLC Building Block

rev. 3.0
Table of Figures

Figure 1. Service Definition Overview ..G-1
Figure 2. Message Flow - Information Reporting..G-6
Figure 3. Message Flow - Binding a Stream to a DLSAP ...G-7
Figure 4. Message Flow - Unbinding a Stream from a DLSAP ..G-7
Figure 5. Message Flow: Enabling a specific multicast address on a Stream............................G-8
Figure 6. Message Flow: Disabling a specific multicast address on a Stream...........................G-8
Figure 7. Message Flow: Enabling promiscuous mode on a Stream ...G-8
Figure 8. Message Flow: Disabling promiscuous mode on a Stream ..G-9
Figure 9. LLC Dependencies ...G-9
Figure 10. Class Diagram: LLC Common Types ..G-10
Figure 11. Local Management Class Diagram: Enumerations ..G-11
Figure 12. Local Management Class Diagram: Structures ..G-12
Figure 13. Local Management Class Diagram: Provider and User Interfaces.........................G-13
Figure 14. Stream Connection: Sequence of events...G-15
Figure 15. Connectionless Class Diagram: Types ...G-37
Figure 16. Connectionless Class Diagram: Instantiations of Packet Building BlockG-38
Figure 17. Connectionless Class Diagram: Provider Interface ..G-38
Figure 18. Connectionless Class Diagram: User Interface ..G-39
Figure 19. Acknowledged Connectionless Class Diagram: Types ..G-45
Figure 20. Acknowledged Connectionless Class Diagram: Packet Building Block Instantiations

...G-46
Figure 21. Acknowledged Connectionless Class Diagram: Provider and User InterfacesG-47

Table of Tables
Table 1. LLC States..G-4
Table 2. Cross-Reference of Services and Primitives ..G-5

 iii

JTRS-5000API
LLC Building Block

rev. 3.0

G.1 INTRODUCTION.

G.1.1 Overview.

This document is a mapping of SCA compliant interfaces to functionality specified in the Data
Link Provider Interface (DLPI) specification1.

DLPI specifies an SCA conformant API that is an instantiation of the ISO Data Link Service
Definition DIS 8886 and Logical Link Control DIS 8802-2 (LLC). Where the two standards do
not conform, DIS 8886 prevails.

G.1.2 Service Layer Description.

The role of this API is to provide an interface for a complete API for a Data Link Service (DLS)
provider that can support any implementation of a link layer service.

I/O

Network

Physical

A

B

Waveform
Application

A Data and Real-time
Control

B Non-real-time Control,
Setup and Initialization,
from applications, other
levels, user interface

Ethernet

LLC LLC

MAC

A

B

A

B

A

B

A

B

LLC
API

External
Network

Connection

Figure 1. Service Definition Overview

G.1.3 Modes of Service.

The LLC interface supports three modes of communication: connection, connectionless and
acknowledged connectionless. The connection mode is circuit-oriented and enables data to be
transferred over a pre-established connection in a sequenced manner. Data may be lost or

1 Data Link Provider Interface Specification, Revision 2.0.0, August 20, 1991, copyright 1991 Unix International,
Inc.

 G-1

JTRS-5000API
LLC Building Block

rev. 3.0
corrupted in this service mode, however, due to provider-initiated resynchronization or
connection aborts.

The connectionless mode is message-oriented and supports data transfer in self-contained units
with no logical relationship required between units. Because there is no acknowledgement of
each data unit transmission, this service mode can be unreliable in the most general case.
However, a specific DLS provider can provide assurance that messages will not be lost,
duplicated, or reordered.

The acknowledged connectionless mode provides the means by which a data link user can send
data and request the return of data at the same time. Although the exchange service is
connectionless, in-sequence delivery is guaranteed for data sent by the initiating station. The
data unit transfer is point-to-point.

G.1.3.1 Connection Oriented.

The connection-mode service is characterized by four phases of communication: local
management, connection establishment, data transfer, and connection release.

G.1.3.1.1 Local Management.

This phase enables a DLS user to initialize a stream for use in communication and establish an
identity with the DLS provider.

G.1.3.1.2 Connection Establishment.

This phase enables two DLS users to establish a data link connection between them to exchange
data. One user (the calling DLS user) initiates the connection establishment procedures, while
another user (the called DLS user) waits for incoming connect requests. The called DLS user is
identified by an address associated with its stream (as will be discussed shortly).

A called DLS user may either accept or deny a request for a data link connection. If the request
is accepted, a connection is established between the DLS users and they enter the data transfer
phase.

For both the calling and called DLS users, only one connection may be established per stream.
Thus, the stream is the communication endpoint for a data link connection.

The called DLS user may choose to accept a connection on the stream where it received the
connect request, or it may open a new stream to the DLS provider and accept the connection on
this new, responding stream. By accepting the connection on a separate stream, the initial stream
can be designated as a listening stream through which all connect requests will be processed. As
each request arrives, a new stream (communication endpoint) can be opened to handle the
connection, enabling subsequent requests to be queued on a single stream until they can be
processed.

G.1.3.1.3 Data Transfer.

In this phase, the DLS users are considered peers and may exchange data simultaneously in both
directions over an established data link connection. Either DLS user may send data to its peer
DLS user at any time. Data sent by a DLS user is guaranteed to be delivered to the remote user
in the order in which it was sent.

 G-2

JTRS-5000API
LLC Building Block

rev. 3.0
G.1.3.1.4 Connection Release.

This phase enables either the DLS user, or the DLS provider, to break an established connection.
The release procedure is considered abortive, so any data that has not reached the destination
user when the connection is released may be discarded by the DLS provider.

G.1.3.2 Connectionless Mode.

The connectionless mode service does not use the connection establishment and release phases
of the connection-mode service. The local management phase is still required to initialize a
stream. Once initialized, however, the connectionless data transfer phase is immediately entered.
Because there is no established connection, however, the connectionless data transfer phase
requires the DLS user to identify the destination of each data unit to be transferred. The
destination DLS user is identified by the address associated with that user (as will be discussed
shortly).

Connectionless data transfer does not guarantee that data units will be delivered to the
destination user in the order in which they were sent. Furthermore, it does not guarantee that a
given data unit will reach the destination DLS user, although a given DLS provider may provide
assurance that data will not be lost.

G.1.3.3 Acknowledged Connectionless Mode.

The acknowledged connectionless mode service also does not use the connection establishment
and release phases of the connection-mode service. The local management phase is still required
to initialize a stream. Once initialized, the acknowledged connectionless data transfer phase is
immediately entered.

Acknowledged connectionless data transfer guarantees that data units will be delivered to the
destination user in the order in which they were sent. A data link user entity can send a data unit
to the destination DLS user, request a previously prepared data unit from the destination DLS
user, or exchange data units.

G.1.4 Service States.

The following table describes the states associated with the LLC interface. It presents the state
used in the state transition table, Table 1, and throughout this specification, a brief description of
the state, and an indication of whether the state is valid for connection-oriented data link service
(SM_CODLS), connectionless data link service (SM_CLDLS), acknowledged connectionless
data link service (SM_ACLDLS) or all.

 G-3

JTRS-5000API
LLC Building Block

rev. 3.0

Table 1. LLC States

LLC STATE DESCRIPTION MODE
STATE_UNATTACHED Component instantiated but (physical point of

attachment) PPA not attached
ALL

STATE_UNBOUND Stream is attached but not bound to a DLSAP ALL
STATE_IDLE The stream is bound and activated for use -

connection establishment or connectionless data
transfer may take place

ALL

STATE_OUTCON_PENDING An outgoing connection is pending -the DLS
user is waiting for a DL_CONNECT_CON

SM_CODLS

STATE_INCON_PENDING An incoming connection is pending -the DLS
provider is waiting for a DL_CONNECT_RES

SM_CODLS

STATE_CONN_RES_PENDING The DLS user is waiting for an
acknowledgement of a DL_CONNECT_RES

SM_CODLS

STATE_DATAXFER Connection-mode data transfer may take place SM_CODLS
STATE_USER_RESET_PENDING A user-initiated reset is pending - the DLS user

is waiting for a DL_RESET_CON
SM_CODLS

STATE_PROV_RESET_PENDING A provider-initiated reset is pending -the DLS
provider is waiting for a DL_RESET_RES

SM_CODLS

STATE_RESET_RES_PENDING The DLS user is waiting for an
acknowledgement of a DL_RESET_RES

SM_CODLS

STATE_DISCON_PENDING_OUTCON The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from the
DL_OUTCON_PENDING state

SM_CODLS

STATE_DISCON_PENDING_INCON The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from the
DL_INCON_PENDING state

SM_CODLS

STATE_DISCON_PENDING_DATAXFER The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from the
DL_DATAXFER state

SM_CODLS

STATE_DISCON_PENDING_USER_RESET The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from the
DL_USER_RESET_PENDING state

SM_CODLS

STATE_DISCON_PENDING_PROV_RESET The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from the
DL_PROV_RESET_PENDING state

SM_CODLS

G.1.5 Referenced Documents.

ISO/IEC 8886
1996

Information Technology - Open Systems Interconnection - Data Link
Service Definition

ISO/IEC 8802-2
1998

LANS - Part 2: Logical Link Control

 G-4

JTRS-5000API
LLC Building Block

rev. 3.0
G.2 UUID.
Not applicable.

G.3 SERVICES.
The features of the Connectionless LLC interface are defined in terms of the services provided
by the DLS provider, and the individual primitives that may flow between the Service User and
DLS provider.

The services are tabulated below and described more fully in the remainder of this section.

Table 2. Cross-Reference of Services and Primitives

Service Group Service Primitives
Information
Reporting

DL_INFO_REQ, DL_INFO_ACK,
DL_ERROR_ACK

Bind DL_BIND_REQ,
DL_SUBS_BIND_REQ,
DL_UNBIND_REQ,
DL_SUBS_UNBIND_REQ,

Local Management

Other DL_ENABMULTI_REQ,
DL_DISABMULTI_REQ,
DL_PROMISCON_REQ,
DL_PROMISCOFF_REQ

Data Transfer DL_UNITDATA_REQ,
DL_UNITDATA_IND

Connectionless Mode Data
Transfer

Error Reporting DL_UDERROR_IND
Acknowledged
Connectionless Mode Data
Transfer

Data Transfer DL_DATA_ACK_REQ,
DL_DATA_ACK_IND,
DL_DATA_ACK_STATUS_IND,
DL_REPLY_REQ,
DL_REPLY_IND,
DL_REPLY_UPDATE_REQ,
DL_REPLY_UPDATE_STATUS

G.3.1 Local Management services.

The local management services apply to all modes of service. These services, which fall outside
the scope of standards specifications, define the method for initializing a stream that is connected
to a DLS provider. DLS provider information reporting services are also supported by the local
management facilities.

G.3.1.1 Information Reporting Service.

This service provides information about the instantiation of the link layer to the Service User.
The primitive DL_INFO_REQ requests the DLS provider to return operating information about
the instantiated link layer. The DLS provider returns the response in the same primitive.

 G-5

JTRS-5000API
LLC Building Block

rev. 3.0

DL_INFO
response

DL_INFO
request

Figure 2. Message Flow - Information Reporting

G.3.1.2 Bind Service.

The bind service associates a data link service access point (DLSAP) with a stream. The DLSAP
is identified by a DLSAP address.

DL_BIND_REQ requests that the DLS provider bind a DLSAP to a stream. It also notifies the
DLS provider to make the stream active with respect to the DLSAP for processing
connectionless and acknowledged connectionless data transfer and connection establishment
requests. Protocol-specific actions taken during activation should be described in DLS provider-
specific addenda.

The DLS provider returns the binding response in the same primitive. The DLS provider
indicates failure by raising and exception.

Certain DLS providers require the capability of binding on multiple DLSAP addresses.
DL_SUBS_BIND_REQ provides that added capability. The DLS provider returns the bound
DLSAP address in the same primitive. The DLS provider indicates failure by raising and
exception.

The normal flow of messages is illustrated in Figure 3.

 G-6

JTRS-5000API
LLC Building Block

rev. 3.0

DL_BIND
response

DL_BIND
request

DL_SUBS_BIND
request

DL_SUBS_BIND
response

Figure 3. Message Flow - Binding a Stream to a DLSAP

DL_UNBIND_REQ requests the DLS provider to unbind all DLSAP(s) from a stream. The

DL_UNBIND_REQ also unbinds all the subsequently bound DLSAPs that have not been
unbound. The DLS provider indicates failure by raising an exception.

DL_SUBS_UNBIND_REQ requests the DLS Provider to unbind the subsequently bound
DLSAP. The DLS Provider indicates failure by raising an exception.

DL_UNBIND
request

DL_SUBS_UNBIND
request

Figure 4. Message Flow - Unbinding a Stream from a DLSAP

DL_ENABMULTI_REQ requests the DLS Provider to enable specific multicast addresses on a
per stream basis. The DLS provider indicates failure by raising an exception.

 G-7

JTRS-5000API
LLC Building Block

rev. 3.0

DL_ENABMULTI
request

Figure 5. Message Flow: Enabling a specific multicast address on a Stream

DL_DISABMULTI_REQ requests the DLS Provider to disable specific multicast addresses on a
per stream basis. The DLS provider indicates failure by raising an exception.

DL_DISABMULTI
request

Figure 6. Message Flow: Disabling a specific multicast address on a Stream

DL_PROMISCON_REQ requests the DLS Provider to enable promiscuous mode on a per
Stream basis, either at the physical level or at the Service Access Point (SAP) level. The DLS
provider indicates failure by raising an exception.

DL_PROMISCON
request

Figure 7. Message Flow: Enabling promiscuous mode on a Stream

 G-8

JTRS-5000API
LLC Building Block

rev. 3.0
DL_PROMISCOFF_REQ requests the DLS Provider to disable promiscuous mode on a per
Stream basis, either at the physical level or at the SAP level. The DLS provider indicates failure
by raising an exception.

DL_PROMISCOFF
request

Figure 8. Message Flow: Disabling promiscuous mode on a Stream

G.4 SERVICE PRIMITIVES.
The interface to the local management portion of the data link layer defines an IDL interface
between the provider of the data link service (DLS provider) and the consumer of the data link
service (DLS user). This interface in combination with other link layer interfaces will form a
complete link layer API. Figure 9 shows the LLC dependencies on other SCA elements.

LLC

global

(from API Build Blocks)

<<CORBAModule>>

CF
(from Design Model)

<<CORBAModule>>
Packet

(from API Build Blocks)

<<CORBAModule>>

Figure 9. LLC Dependencies

Figure 10 shows the types that are common across the LLC.

 G-9

JTRS-5000API
LLC Building Block

rev. 3.0

DLSAPAddressType
sap : unsigned long
address : CF::OctetSequence

<<CORBAStruct>>

OctetSequence
(from CF)

<<CORBATypedef>>

ServiceErrorType
ERROR_INVALID_STATE
ERROR_UNSUPPORTED
ERROR_BAD_ADDRESS
ERROR_BAD_CORRELATION
ERROR_NOT_ENABLED
ERROR_TOO_MANY
ERROR_NO_ACCESS
ERROR_BOUND
ERROR_NO_AUTO
ERROR_NO_XIDAUTO
ERROR_NO_TESTAUTO
ERROR_BAD_DATA
ERROR_NO_ADDRESS
ERROR_BAD_SAP
ERROR_BAD_QOS_PARAMETERS
ERROR_UNDELIVERABLE

<<CORBAEnum>>

PacketErrorType
usageError : ServiceErrorType
errNo : unsigned long

<<CORBAUnion>>

<<uses>>

Figure 10. Class Diagram: LLC Common Types

G.4.1 Local management service primitives.

This section describes the local management service primitives that are common to connection,
connectionless and acknowledged connectionless service modes in full link layer API. These
primitives support the Information Reporting, Bind, enabling/disabling of multicast addresses
and turning on/off the promiscuous mode. Once a connection has been established between the
DLS provider and the Service User, these primitives initialize the layer, preparing it for use.

The class diagrams in Figure 11, Figure 12 and Figure 13 show the enumeration types, structures
and interfaces defined for the Local Management service.

 G-10

JTRS-5000API
LLC Building Block

rev. 3.0

PromiscuousModeType
PM_PHYSICAL
PM_SAP
PM_MULTI

<<CORBAEnum>>

StateType
STATE_UNATTACHED
STATE_UNBOUND
STATE_IDLE
STATE_OUTCON_PENDING
STATE_INCON_PENDING
STATE_CONN_RES_PENDING
STATE_DATAXFER
STATE_USER_RESET_PENDING
STATE_PROV_RESET_PENDING
STATE_RESET_RES_PENDING
STATE_DISCON_PENDING_OUTCON
STATE_DISCON_PENDING_INCON
STATE_DISCON_PENDING_DATAXFER
STATE_DISCON_PENDING_USER_RESET
STATE_DISCON_PENDING_PROV_RESET

<<CORBAEnum>>

ServiceModeType
SM_CODLS
SM_CLDLS
SM_ACLDLS

<<CORBAEnum>>

Figure 11. Local Management Class Diagram: Enumerations

 G-11

JTRS-5000API
LLC Building Block

rev. 3.0

BindRequestType
sap : unsigned long
maxConnectionInd : unsigned long
serviceMode : ServiceModeType
isListenStream : boolean
autoXID : boolean
autoTest : boolean

<<CORBAStruct>>

BindResponseType
sapAddress : DLSAPAddressType
maxConnectionInd : unsigned long
autoXID : boolean
autoTest : boolean

<<CORBAStruct>>

InfoType
currentState : StateType
mode : sequence <ServiceModeType>
broadcastAddress : CF::OctetSequence
address : DLSAPAddressType

<<CORBAStruct>>

ServiceModeType
<<CORBAEnum>>

<<uses>>

StateType
<<CORBAEnum>>

OctetSequence
(from CF)

<<CORBATypedef>>
DLSAPAddressType

(from LLC)

<<CORBAStruct>>

<<uses>>

<<uses>>
<<uses>>

<<uses>>

Figure 12. Local Management Class Diagram: Structures

 G-12

JTRS-5000API
LLC Building Block

rev. 3.0

Provider
maxTU : unsigned long
minTU : unsigned long

getInfo(connectionID : in string, info : out InfoType) : void
bind(connectionID : in string, bindReq : in BindRequestType, bindResp : out BindResponseType) : void
unbind(connectionID : in string) : void
subsBind(connectionID : in string, address : inout DLSAPAddressType) : void
subsUnbind(connectionID : in string, address : in DLSAPAddressType) : void
enableMulticast(connectionID : in string, address : in CF::OctetSequence) : void
disableMulticast(connectionID : in string, address : in CF::OctetSequence) : void
enablePromiscuousMode(connectionID : in string, level : in PromiscuousModeType) : void
disablePromiscuousMode(connectionID : in string, level : in PromiscuousModeType) : void

<<Interface>>

User
connectionID : string

<<Interface>>

InfoType
<<CORBAStruct>>

BindRequestType
<<CORBAStruct>>

BindResponseType
<<CORBAStruct>>

<<uses>> <<uses>> <<uses>>

OctetSequence
(from CF)

<<CORBATypedef>>

<<uses>>

DLSAPAddressType
(from LLC)

<<CORBAStruct>>

<<uses>>

PromiscuousModeType
<<CORBAEnum>>

<<uses>>

Figure 13. Local Management Class Diagram: Provider and User Interfaces

G.4.1.1 PPA Initialization/De-initialization.

The Physical Point of Attachment (PPA) associated with each stream must be initialized before
the DLS provider can transfer data over the medium. The initialization and de-initialization of
the PPA is a network management issue, but this service must address the issue because of the
impact such actions will have on a DLS user. More specifically, this service requires the DLS
provider to initialize the PPA associated with a stream at some point before it completes the
processing of the DL_BIND_REQ. Guidelines for initialization and de-initialization of a PPA
by a DLS provider are presented here.

A DLS provider may initialize a PPA using the following methods:

 G-13

JTRS-5000API
LLC Building Block

rev. 3.0
• pre-initialized by some network management mechanism before the DL_BIND_REQ is

received; or

• automatic initialization on receipt of a DL_BIND_REQ or the configure command
through the resource interface.

A specific DLS provider may support either of these methods, or possibly some combination of
the two, but the method implemented has no impact on the DLS user. From the DLS user’s
viewpoint, the PPA is guaranteed to be initialized after successful execution of the
DL_BIND_REQ. For automatic initialization, this implies that the DL_BIND_REQ cannot
complete until the initialization has completed.

If pre-initialization has not been performed and/or automatic initialization fails, the DLS
provider will fail the DL_BIND_REQ. Two errors, ERROR_INITFAILED and
ERROR_NOTINIT, may be returned in the ServiceUsageError exception raised by a
DL_BIND_REQ if PPA initialization fails. ERROR_INITFAILED is returned when a DLS
provider supports automatic PPA initialization, but the initialization attempt failed.
ERROR_NOTINIT is returned when the DLS provider requires pre-initialization, but the PPA is
not initialized before the DL_BIND_REQ is received.

A DLS provider may handle PPA de-initialization using the following methods:

• automatic de-initialization upon receipt of the DL_UNBIND_REQ or upon disconnection
of the last stream associated with the PPA;

• automatic de-initialization after expiration of a timer following the last
DL_UNBIND_REQ, or close as appropriate; or

• no automatic de-initialization; administrative intervention is required to de-initialize the
PPA at some point after it is no longer being accessed.

A specific DLS provider may support any of these methods, or possibly some combination of
them, but the method implemented has no impact on the DLS user. From the DLS user’s
viewpoint, the PPA is guaranteed to be initialized and available for transmission until it closes or
unbinds the stream associated with the PPA.

DLS provider-specific addendum documentation should describe the method chosen for PPA
initialization and de-initialization.

G.4.1.2 Stream Connection.

The connection of a set of components to form a bi-directional data path is referred to in this
document as a stream. A given component may de-multiplex between several other components.
Each of the connections to the other components represents an individual stream.

The DLS provider must be able to de-multiplex between multiple streams (DLS users). For this
to occur the DLS Provider must be able to identify the source of operation invocations as well as
associate a Service Access Point (SAP) with a stream. The diagram in Figure 14 illustrates the
sequence of events that must occur for the DLS provider to be properly connected to a DLS user.

 G-14

JTRS-5000API
LLC Building Block

rev. 3.0

 Invoke bind operation upon
configuration of the DLS User with
the SAP obtained in the configure
operation. The connectionID is the
connectionID attribute set in step
3.1.

DLS Provider :
Resource

DLS User
Downstream : Port

DLS Provider
Upstream : Port

LLC::LocalMana
gement : (User)

LLC::LocalManag
ement : (User)

DLS User :
Resource

 : ApplicationFactory

1. getPort(name : in string)

2. getPort(name : in string)

3. connectPort(connection : in Object, name : in string)

3.1. connectionID(ID : in string)

4. getPort(name : in string)

5. getPort(name : in string)

6. connectPort(connection : in Object, name : in string)

8. configure(configProperties : in Properties)

7. configure(configProperties : in Properties)

8.1. bind(connectionID : in string, bindReq : in BindRequestType, bindResp : out BindResponseType)

Figure 14. Stream Connection: Sequence of events
1 The CF::ApplicationFactory invokes getPort on the DLS Provider resource to get the object

that uses the LLC::LocalManagement::User interface.

2 The ApplicationFactory invokes getPort on the DLS User resource to get the object that
realizes the LLC::LocalManagement::User interface.

3 The ApplicationFactory invokes connectPort on the object obtained in step 2 from the DLS
Provider with the object in step 1 from the DLS User as a parameter.

3.1 The implementation of connectPort for the object obtained from the DLS User in step 1
sets the connectionID attribute on the object obtained in step 2 that realizes the
LLC::LocalManagement::User interface. This step identifies to the DLS User its
connectionID associated with the DLS Provider for upstream data flow.

4 The ApplicationFactory invokes getPort on the DLS Provider resource to get the object
reference that realizes the LLC::LocalManagement::Provider interface.

 G-15

JTRS-5000API
LLC Building Block

rev. 3.0
5 The ApplicationFactory invokes getPort on the DLS User resource to get the object that

uses the LLC::LocalManagement::Provider interface.

6 The ApplicationFactory invokes connectPort on the DLS User to connect the in
LLC::LocalManagement::Provider interface to the DLS User.

7 The ApplicationFactory invokes configure on the DLS Provider resource.

8 The ApplicationFactory invokes configure on the DLS User resource with the SAP(s) to be
configured

8.1 The DLS User resource invokes the bind operation on the object obtained in step 4 that
realizes the LLC::LocalManagement::Provider interface. This operation associates the
SAP of the DLS User (SAPConfiguratorType) with its object reference in the DLS
provider.

Upon completion of this sequence of events the DLS provider can now de-multiplex upstream
data between multiple DLS Users based on traffic content based on the SAP. If there are
multiple SAPs associated with the stream the DLS User will invoke the subsBind operation.

 G-16

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.3 DL_MAX_SDU_REQ.

This primitive requests the maximum size of a single service data unit (SDU) of the
physical/logical interface to which the DLS provider is attached.

G.4.1.3.1 Synopsis.
readonly attribute unsigned long maxSDU

This attribute will turn into an accessor function in the target language.

G.4.1.3.2 Parameters.

.N/A

G.4.1.3.3 State.

This primitive is valid in any state.

G.4.1.3.4 New State.

No change.

G.4.1.3.5 Response.

The DLS provider returns an unsigned long value indicating the maximum size of a single SDU
of the physical interface/logical interface to which the link layer is attached.

G.4.1.3.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.3.7 Errors/Exceptions.

N/A

G.4.1.4 DL_MIN_SDU_REQ.

This primitive requests the minimum size of a single SDU of the physical/logical interface to
which the DLS provider is attached.

G.4.1.4.1 Synopsis.
readonly attribute unsigned long minSDU

This attribute will turn into an accessor function in the target language.

G.4.1.4.2 Parameters.

N/A.

G.4.1.4.3 State.

This primitive is valid in any state.

G.4.1.4.4 New State.

No change.

 G-17

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.4.5 Response.

The DLS provider returns an unsigned long value indicating the minimum size of a single SDU
of the physical interface/logical interface to which the link layer is attached.

G.4.1.4.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.4.7 Errors/Exceptions.

N/A.

 G-18

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.5 DL_INFO_REQ.

This primitive requests information of the DLS provider about the stream. This information
includes a set of provider-specific parameters, as well as the current state of the interface.

G.4.1.5.1 Synopsis.

void getInfo (in string connectionID, out InfoType info) raises (InvalidPort, SystemError);

G.4.1.5.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

G.4.1.5.3 State.

The message is valid in any state.

G.4.1.5.4 New State.

The resulting state is unchanged.

G.4.1.5.5 Response.

The DLS provider returns the information about the stream as an out parameter in the info
parameter which has the following structure:

struct InfoType {
StateType currentState;
sequence <ServiceModeType mode;
CF::OctetSequence broadcastAddress;
DLSAPAddressType address;

};

currentState

conveys the state of the interface for the connection when the DLS provider issued this
acknowledgement. See Appendix B for a list of the states and an explanation of each.

mode

if returned before the DL_BIND_REQ is processed, this conveys which service modes
(connection-mode, connectionless-mode or acknowledged connectionless-mode, or any
combination of these modes) the DLS provider can support. It contains a sequence
specifying one or more than one of the following values:

CODLS connection-oriented data link service;
CLDLS connectionless data link service;
ACLDLS acknowledged connectionless data link service;

Once a specific service mode has been bound to the connection, this field returns that
specific service mode.

 G-19

JTRS-5000API
LLC Building Block

rev. 3.0
broadcastAddress

this is the physical broadcast address

address

conveys the address that is bound to the associated connectionID. If the DLS user issues
a DL_INFO_REQ prior to binding a DLSAP, the content of address is undefined.

G.4.1.5.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.5.7 Errors/Exceptions.

If the request fails, an exception will be generated.

InvalidPort

 The connectionID was not recognized by the DLS provider.

SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

 G-20

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.6 DL_BIND_REQ.

Requests the DLS provider bind a DLSAP to the stream. The DLS user must identify the
address of the DLSAP to be bound to the stream. For connection-mode service, the DLS user
also indicates whether it will accept incoming connection requests on the stream. Finally, the
request directs the DLS provider to activate the stream associated with the DLSAP. A stream is
viewed as active when the DLS provider may transmit and receive protocol data units destined to
or originating from the stream. The PPA associated with each stream must be initialized upon
completion of the processing of the DL_BIND_REQ (see section 4.1.1, PPA Initialization / De-
initialization). More specifically, the DLS user is ensured that the PPA is initialized when the
DL_BIND_REQ is completed successfully. If the PPA cannot be initialized, the
DL_BIND_REQ will fail. A stream may be bound as a "connection management" stream, such
that it will receive all connect requests that arrive through a given PPA (the connection
management stream will be explained in more detail in a future revision of this document when
the connection oriented service will be included). In this case, sap will be ignored.

G.4.1.6.1 Synopsis.

void bind (
in string connectionID,
in BindRequestType bindReq,
out bindResponseType bindResp

) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.6.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

bindReq

the bindReq has the following structure:

struct BindRequestType {
 any sap;
 unsigned long maxConnectionInd;
 ServiceModeType serviceMode;
 boolean isListenStream;
 boolean autoXID;
 boolean autoTest;
};

sap
conveys sufficient information to identify the DLSAP that will be bound to the
DLPI stream (see section 2.3, DLPI Addressing, for a description of DLSAP
addresses). The format of this information is specific to a given DLS provider,
and may contain the full DLSAP address or some portion of that address

 G-21

JTRS-5000API
LLC Building Block

rev. 3.0
sufficient to uniquely identify the DLSAP in question. The full address of the
bound DLSAP will be returned in the bindResp.

The following rules are used by the DLS provider when binding a DLSAP
address.

• The DLS provider must define and manage its DLSAP address space.

• This service allows the same DLSAP to be bound to multiple connectionIDs, but
a given DLS provider may need to restrict its address space to allow one stream
per DLSAP.

• The DLS provider may not be able to bind the specified DLSAP address for the
following reasons:

(1) the DLS provider may statically associate a specific DLSAP with each
stream; or

(2) the DLS provider may only support one stream per DLSAP and the
DLS user attempted to bind a DLSAP that was already bound to another
stream.

In case (1), the value of sap is ignored by the DLS provider and the bindResp
returns the DLSAP address that is already associated with the stream. In case (2),
if the DLS provider cannot bind the given DLSAP to the stream, it may attempt to
choose an alternate DLSAP and return that on the DL_BIND_ACK. If an
alternate DLSAP cannot be chosen, the DLS provider will raise
ServiceUsageError with qualifier set to NOADDR.

Because of the provider-specific nature of the DLSAP address, DLS user software
that is to be protocol independent should avoid hard-coding this value. The DLS
user should retrieve the necessary DLSAP address from some other entity (such
as a management entity or higher layer protocol entity) and insert it without
inspection into the bindReq.

maxConnectionInd
conveys the maximum number of outstanding DL_CONNECT_IND messages
allowed on the stream. If the value is zero, the stream cannot accept any
DL_CONNECT_IND messages. If greater than zero, the DLS user will accept
DL_CONNECT_IND messages up to the given value before having to respond
with a DL_CONNECT_RES or a DL_DISCONNECT_REQ (a future section on
Multi-threaded Connection Establishment, will provide details on how this value
is used to support multi-threaded connect processing). The DLS provider may not
be able to support the value supplied in maxConnectionInd, as specified by the
following rules.

• If the provider cannot support the specified number of outstanding connect
indications, it should set the value down to a number it can support.

• Only one stream that is bound to the indicated DLSAP may have an allowed
number of maximum outstanding connect indications greater than zero. If a
DL_BIND_REQ specifies a value greater than zero, but another stream has

 G-22

JTRS-5000API
LLC Building Block

rev. 3.0
already bound itself to the DLSAP with a value greater than zero, the DLS
provider will fail the request, raising ServiceUsageError with qualifier set to
BOUND.

• If a stream with maxConnectionInd greater than zero is used to accept a
connection, the stream will be found busy during the duration of the connection,
and no other streams may be bound to the same DLSAP with a value of
maxConnectionInd greater than zero. This restriction prevents more than one
stream bound to the same DLSAP from receiving connect indications and
accepting connections. Accepting a connection on such a stream is only allowed
if there is just a single outstanding connect indication being processed.

• A DLS user should always be able to request a maxConnectionInd value of zero,
since this indicates to the DLS provider that the stream will only be used to
originate connect requests.

• A stream with a negotiated value of maxConnectionInd that is greater than zero
may not originate connect requests.

This field is ignored in connectionless-mode service.

serviceMode

conveys the desired mode of service for this stream, and may contain one of the
following:

DL_CODLS connection-oriented data link service.

DL_CLDLS connectionless data link service.

DL_ACLDLS acknowledged connectionless data link service.

If the DLS provider does not support the requested service mode, a
ServiceUsageError exception will be raised, with qualifier set to
UNSUPPORTED.

isListenStream

if true, indicates that the stream is the "connection management" stream for the
PPA to which the stream is attached. When an incoming connect request arrives,
the DLS provider will first look for a stream bound with maxConnectionInd
greater than zero that is associated with the destination DLSAP. If such a stream
is found, the connect indication will be issued on that stream. Otherwise, the DLS
provider will issue the connect indication on the "connection management" stream
for that PPA, if one exists. Only one "connection management" stream is allowed
per PPA, so an attempt to bind a second "connection management" stream on a
PPA will fail and the ServiceUsageError exception will be raised with qualifier
error set to BOUND. When maxConnectionInd is non-zero, the value of sap will
be ignored. In connectionless-mode service, maxConnectionInd is ignored by the
DLS provider.

 G-23

JTRS-5000API
LLC Building Block

rev. 3.0
autoXID, autoTest

indicates to the DLS Provider that XID and/or TEST responses for this stream are
to be automatically generated by the DLS Provider. The DLS Provider will not
generate DL_XID_IND and/or DL_TEST_IND, and will indicate as erroneous a
DL_XID_REQ and/or DL_TEST_REQ. If the DLS Provider does not support
automatic handling of XID and/or TEST responses, a ServiceUsageError
exception will be raised with qualifier set to ERROR_NO_AUTO,
ERROR_NO_XIDAUTO or ERROR__NO_TESTAUTO.

G.4.1.6.3 State.

This primitive is valid in state STATE_UNBOUND.

G.4.1.6.4 New State.

The resulting state is STATE_IDLE.

G.4.1.6.5 Response.

A successful bind of a DLSAP to a stream will return information in the bindResp parameter
which consists of the following structure.

struct BindResponseType {
 DLSAPAddressType sapAddress;
 unsigned long maxConnectionInd;
 unsigned long xidTestFlag;
};

sapAddress

conveys the DLSAP address information associated with the bound DLSAP. It
corresponds to the sap field of the associated DL_BIND_REQ, which contains either part
or all of the DLSAP address. For that portion of the DLSAP address conveyed in the
DL_BIND_REQ, this field contains the corresponding portion of the address for the
DLSAP that was actually bound.

MaxConnectionInd

conveys the allowed, maximum number of outstanding DL_CONNECT_IND messages
to be supported on the stream. If the value is zero, the stream cannot accept any
DL_CONNECT_IND messages. If greater than zero, the DLS user will accept
DL_CONNECT_IND messages up to the given value before having to respond with a
DL_CONNECT_RES or a DL_DISCONNECT_REQ. The rules for negotiating this
value are presented under the description of DL_BIND_REQ.

autoXID, autoTest

conveys the XID and TEST responses supported by the provider. If true the relevant
response is automatically generated by the DLS provider.

G.4.1.6.6 Originator.

This primitive is initiated by the DLS user.

 G-24

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.6.7 Errors/Exceptions.

If the request fails, an exception will be generated.

InvalidPort

 The connectionID was not recognized by the DLS provider.

ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

ERROR_BADADDR The DLSAP address information was invalid or was in
an incorrect format.

ERROR_INITFAILED Automatic initialization of the PPA failed.

ERROR_NOTINIT The PPA had not been initialized prior to this request.

ERROR_ACCESS The DLS user did not have proper permission to use the
requested DLSAP address.

ERROR_BOUND The DLS user attempted to bind a second stream to a
DLSAP with maxConnectionInd greater than zero, or the
DLS user attempted to bind a second "connection
management" stream to a PPA.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_NOADDR The DLS provider could not allocate a DLSAP address
for this stream.

ERROR_UNSUPPORTED The DLS provider does not support requested service
mode on this stream.

ERROR_NO_AUTO Automatic handling of XID and TEST responses not
supported.

ERROR_NO_XIDAUTO Automatic handling of XID response not supported.

ERROR_NO_TESTAUTO Automatic handling of TEST response not supported.

SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

 G-25

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.7 DL_UNBIND_REQ.

Requests the DLS provider to unbind the DLSAP that had been bound by a previous
DL_BIND_REQ from this stream. If one or more DLSAPs were bound to the stream using a
DL_SUBS_BIND_REQ, and have not been unbound using a DL_SUBS_UNBIND_REQ, the
DL_UNBIND_REQ will unbind all the subsequent DLSAPs for that stream along with the
DLSAP bound using the previous DL_BIND_REQ.

At the successful completion of the request, the DLS user may issue a new DL_BIND_REQ for
a potentially new DLSAP.

G.4.1.7.1 Synopsis.

void unbind (in string connectionID) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.7.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

G.4.1.7.3 State.

The operation is valid in STATE_IDLE.

G.4.1.7.4 New State.

The resulting state is STATE_UNBOUND.

G.4.1.7.5 Response.

N/A.

G.4.1.7.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.7.7 Errors/Exceptions.

InvalidPort

 The connectionID was not recognized by the DLS provider.

ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

 G-26

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.8 DL_SUBS_BIND_REQ.

Requests the DLS provider bind a subsequent DLSAP to the stream. The DLS user must
identify the address of the subsequent DLSAP to be bound to the stream.

G.4.1.8.1 Synopsis.

void subsBind (

in string connectionID,
inout DLSAPAddressType address

) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.8.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

address

conveys the DLSAP address to be bound.

G.4.1.8.3 State.

The primitive is valid in STATE_IDLE.

G.4.1.8.4 New State.

The resulting state is unchanged.

G.4.1.8.5 Response.

The bound DLSAP address is returned to the DLS user in the address parameter.

G.4.1.8.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.8.7 Errors/Exceptions.

InvalidPort

 The connectionID was not recognized by the DLS provider.

ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

ERROR_BADADDR The DLSAP address information was invalid or was in
an incorrect format.

ERROR_ACCESS The DLS user did not have proper permission to use the
requested DLSAP address.

 G-27

JTRS-5000API
LLC Building Block

rev. 3.0
ERROR_BOUND The DLS user attempted to bind a second stream to a

DLSAP with maxConnectionInd greater than zero, or the
DLS user attempted to bind a second "connection
management" stream to a PPA.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_UNSUPPORTED The DLS provider does not support requested service
mode on this stream.

ERROR_TOO_MANY Limit exceeded on the number of DLSAPs per stream

SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

 G-28

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.9 DL_SUBS_UNBIND_REQ.

Requests the DLS Provider to unbind the DLSAP that had been bound by a previous
DL_SUBS_BIND_REQ from this stream.

G.4.1.9.1 Synopsis.

void subsUnbind (
in string connectionID,
in DLSAPAddressType address

) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.9.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

address

identifies the DLSAP address to unbind from the stream.

G.4.1.9.3 State.

The primitive is valid in STATE_IDLE.

G.4.1.9.4 New State.

The resulting state is unchanged.

G.4.1.9.5 Response.

N/A.

G.4.1.9.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.9.7 Errors/Exceptions.

InvalidPort

 The connectionID was not recognized by the DLS provider.

ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

ERROR_BADADDR The DLSAP address information was invalid or was in
an incorrect format.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

 G-29

JTRS-5000API
LLC Building Block

rev. 3.0
SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

G.4.1.10 DL_ENABMULTI_REQ.

Requests the DLS provider to enable specific multicast addresses on a per stream basis. It is
invalid for a DLS provider to pass upstream messages that are destined for any address other
than those explicitly enabled on that stream by the DLS user.

G.4.1.10.1 Synopsis.

void enableMulticast (
in string connectionID,
in CF::OctetSequence address

) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.10.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

address

the multicast address to enable.

G.4.1.10.3 State.

This primitive is valid in any state accept STATE_UNATTACHED.

G.4.1.10.4 New State.

The resulting state is unchanged.

G.4.1.10.5 Response.

N/A.

G.4.1.10.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.10.7 Errors/Exceptions.

InvalidPort

 The connectionID was not recognized by the DLS provider.

ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

 G-30

JTRS-5000API
LLC Building Block

rev. 3.0
ERROR_BADADDR The address information was invalid or was in an

incorrect format.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_UNSUPPORTED The primitive is known, but not supported by the DLS
provider.

ERROR_TOO_MANY Too many multicast address enable attempts. Limit
exceeded.

SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

 G-31

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.11 DL_DISABMULTI_REQ.

Requests the DLS Provider to disable specific multicast addresses on a per stream basis.

G.4.1.11.1 Synopsis.

void disableMulticast (

in string connectionID,
in CF::OctetSequence address

) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.11.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

address

the multicast address to disable.

G.4.1.11.3 State.

This primitive is valid in any state accept STATE_UNATTACHED.

G.4.1.11.4 New State.

The resulting state is unchanged.

G.4.1.11.5 Response.

N/A.

G.4.1.11.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.11.7 Errors/Exceptions.

InvalidPort

 The connectionID was not recognized by the DLS provider.

ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

ERROR_BADADDR The address information was invalid or was in an
incorrect format.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_UNSUPPORTED The primitive is known, but not supported by the DLS
provider.

ERROR_NOT_ENABLED Address specified is not enabled.

 G-32

JTRS-5000API
LLC Building Block

rev. 3.0
SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

G.4.1.12 DL_PROMISCON_REQ.

This primitive requests the DLS Provider to enable promiscuous mode on a per stream basis,
either at the physical level or at the SAP level.

The DL Provider will route all received messages on the media to the DLS user until either a
DL_PROMISCOFF_REQ is received or the stream is torn down.

G.4.1.12.1 Synopsis.

void enablePromiscuousMode (

in string connectionID,
in PromiscuousModeType level

) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.12.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

level

indicates promiscuous mode at the physical or SAP level.

PM_PHYS indicates promiscuous mode at the physical level

PM_SAP indicates promiscuous mode at the SAP level

PM_MULTI indicates promiscuous mode for all multicast addresses

G.4.1.12.3 State.

This primitive is valid in any state.

G.4.1.12.4 New State.

The resulting state is unchanged.

G.4.1.12.5 Response.

N/A.

G.4.1.12.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.12.7 Errors/Exceptions.

InvalidPort

 The connectionID was not recognized by the DLS provider.

 G-33

JTRS-5000API
LLC Building Block

rev. 3.0
ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_NOT_SUPPORTED The primitive is known, but not supported by the DLS
provider.

ERROR_UNSUPPORTED The primitive is not supported by the DLS provider.

SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

 G-34

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.1.13 DL_PROMISCOFF_REQ.

This primitive requests the DLS provider to disable promiscuous mode on a per stream basis,
either at the physical level or at the SAP level.

G.4.1.13.1 Synopsis.

void disablePromiscuousMode (

in string connectionID,
in PromiscuousModeType level

) raises (InvalidPort, ServiceUsageError, SystemError);

G.4.1.13.2 Parameters.

connectionID

identifies the stream (a DLS User that is connected to the DLS Provider) .

level

indicates promiscuous mode at the physical or SAP level.

PM_PHYS indicates promiscuous mode at the physical level

PM_SAP indicates promiscuous mode at the SAP level

PM_MULTI indicates promiscuous mode for all multicast addresses

G.4.1.13.3 State.

This primitive is valid in any state.

G.4.1.13.4 New State.

The resulting state is unchanged.

G.4.1.13.5 Response.

N/A.

G.4.1.13.6 Originator.

This primitive is initiated by the DLS user.

G.4.1.13.7 Errors/Exceptions

InvalidPort

 The connectionID was not recognized by the DLS provider.

ServiceUsageError

Indicates that the DLS provider could not complete the request because of an incorrect
use of the service. The qualifier returned in the exception can be one of the following.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

 G-35

JTRS-5000API
LLC Building Block

rev. 3.0
ERROR_NOT_SUPPORTED The primitive is known, but not supported by the

DLS provider.

ERROR_MODE_NOT_EABLED The primitive is not supported by the DLS provider.

SystemError

indicates an error occurred in the environment. The POSIX errno associated with error is
placed in errNo. Not to be confused with CORBA system error exceptions.

 G-36

JTRS-5000API
LLC Building Block

rev. 3.0

G.4.2 connectionless mode service primitives.

Figure 15, Figure 16, Figure 17 and Figure 18 are the type, Packet Building Block instantiations
and Provider and User class diagrams respectively for the connectionless data transfer service.
The DLS user implements the Provider interface and the DLS user implements the User
interface.

RequestHeaderType
destinationAddress : DLSAPAddressType
priority : unsigned long

<<CORBAStruct>>
IndicatorHeaderType

destinationAddress : DLSAPAddressType
sourceAddress : DLSAPAddressType
isGroupAddress : boolean

<<CORBAStruct>>

DLSAPAddressType

sap : unsigned long
address : CF::OctetSequence

(from LLC)

<<CORBAStruct>>

<<uses>>

<<uses>>

Figure 15. Connectionless Class Diagram: Types

 G-37

JTRS-5000API
LLC Building Block

rev. 3.0

ProviderQueue
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in RequestHeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : unsigned long
enableFlowControlSignals(Enable : in boolean) : void
enableEmptySignal(Enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>
UserQueue

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in IndicatorHeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(Enable : in boolean) : void
enableEmptySignal(Enable : in boolean) : void
setNumOfPriorityQueues(numofpriorities : in octet) : void

<<Interface>>

ControlType
PayloadType

Packet

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in ControlType, payload : in PayloadType) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(Enable : in boolean) : void
enableEmptySignal(Enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

(from Packet)

<<API Building Block>>

<<instantiates>>

OctetSequence
(from CF)

<<CORBATypedef>>
RequestHeaderType
<<CORBAStruct>>

IndicatorHeaderType
<<CORBAStruct>>

<<uses>>
<<uses>>

<<instantiates>>

<<uses>>
<<uses>>

Figure 16. Connectionless Class Diagram: Instantiations of Packet Building Block

ProviderQueue
<<Interface>>

PacketSignals

signalHighWatermark(priorityQueueID : in octet) : void
signalLowWaterMark(priorityQueueID : in octet) : void
signalEmpty() : void

(from Packet)

<<Interface>>

Provider
<<Interface>>

Figure 17. Connectionless Class Diagram: Provider Interface

 G-38

JTRS-5000API
LLC Building Block

rev. 3.0

PacketErrorType
(from LLC)

<<CORBAUnion>>

UserQueue
<<Interface>>

PacketSignals

signalHighWatermark(priorityQueueID : in octet) : void
signalLowWaterMark(priorityQueueID : in octet) : void
signalEmpty() : void

(from Packet)

<<Interface>>

User

signalError(destinationAddress : in DLSAPAddressType, error : in PacketErrorType) : void

<<Interface>>

<<uses>>

DLSAPAddressType
(from LLC)

<<CORBAStruct>>

<<uses>>

Figure 18. Connectionless Class Diagram: User Interface

G.4.2.1 DL_UNITDATA_REQUEST.

Conveys one DLSDU from the DLS user to the DLS provider for transmission to a peer DLS
user.

Because connectionless data transfer is an unacknowledged service, the DLS provider makes no
guarantees of delivery of connectionless SDUs. It is the responsibility of the DLS user to do any
necessary sequencing or retransmission of SDUs in the event of a presumed loss.

G.4.2.1.1 Synopsis.

oneway void pushPacket (
 in octet priority,

in RequestHeaderType control,
in CF::OctetSequence payload

);

 G-39

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.2.1.2 Parameters.

priority

priority for queuing in the DLS provider. (0 is lowest priority)

control

control provides information other than user data and is of the following structure.

struct RequestHeaderType {
DLSAPAddressType destinationAddress;
unsigned long priority;

};

destinationAddress

conveys the DLSAP address of the destination DLS user. If the destination user
is implemented using this service, this address is the full DLSAP address returned
from the DL_BIND_REQ.

priority

indicates the priority value within the supported range for this particular SDU.

payload

is a sequence of octets that represent the SDU. The amount of user data that may be
transferred in a single SDU is limited. This limit is conveyed by the attribute maxSDU in
the DL_MAX_SDU primitive.

G.4.2.1.3 State.

The primitive is valid in STATE_IDLE.

G.4.2.1.4 New State.

The resulting state is unchanged.

G.4.2.1.5 Response.

If the DLS provider accepts the data for transmission, there is no response. This does not,
however, guarantee that the data will be delivered to the destination Service User, since the
connectionless data transfer is not a confirmed service. If the request is erroneous, message
DL_UDERROR_IND is returned, and the resulting state is unchanged. If for some reason the
request cannot be processed, the DLS provider may generate a DL_UDERROR_IND to report
the problem. There is, however, no guarantee that such an error report will be generated for all
undeliverable data units, since connectionless data transfer is not a confirmed service.

G.4.2.1.6 Originator.

This primitive is initiated by the Service User.

G.4.2.1.7 Errors/Exceptions.

The following errors can be returned in the DL_UDERROR_IND primitive:

ERROR_BADADDR The destination DLSAP address was in an incorrect format or
contained invalid information

 G-40

JTRS-5000API
LLC Building Block

rev. 3.0
contained invalid information

ERROR_BADDATA The amount of data in the current SDU exceeded the DLS
provider’s SDU limit.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_UNSUPPORTED Requested priority not supplied by provider.

 G-41

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.2.2 DL_UNITDATA_IND.

Conveys one SDU from the DLS provider to the DLS user.

G.4.2.2.1 Synopsis.

oneway void pushPacket (
in octet priority
in IndicatorHeaderType control,
in CF::OctetSequence payload

);

G.4.2.2.2 Parameters.

priority

priority for queuing in the DLS user. (0 is lowest priority)

control

struct IndicatorHeaderType {
DLSAPAddressType destinationAddress;
DLSAPAddressType sourceAddress;
Boolean groupAddress;

};

destinationAddress

conveys the address of the DLSAP where this DL_UNITDATA_IND is intended
to be delivered.

sourceAddress
conveys the DLSAP address of the sending DLS user.

isGroupAddress

is set by the DLS provider upon receiving and passing upstream a packet when
the destination address of the packet is a multicast or broadcast address.

payload

Payload is a sequence of octets that represent the SDU. The length of the octet sequence
must be limited to maxPacketSize - the size of the address in the destinationAddress field
of Control.

G.4.2.2.3 State.

The valid states in which this primitive may execute can only be enumerated in a complete API
of which this building block is a part.

G.4.2.2.4 New State.

The resulting state is unchanged.

 G-42

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.2.2.5 Response.

N/A.

G.4.2.2.6 Originator.

This primitive is initiated by the DLS provider.

G.4.2.2.7 Errors/Exceptions.

N/A.

 G-43

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.2.3 DL_UDERROR_IND.

G.4.2.3.1 Synopsis.

oneway void signalError (

in DLSAPAddressType destinationAddress,
in PacketErrorType error

);

G.4.2.3.2 Parameters.

destinationAddress

 conveys the address of the destination Service User.

error

conveys the error that occurred. It is a union of the following composition.

 union PacketErrorType switch (boolean) {
 case TRUE: ServiceErrorType usageError;
 case FALSE: unsigned long errNo;

};

usageError

conveys an error indication that is service oriented. Valid if switch is TRUE. See
Errors/Exceptions in the description of DL_UNITDATA_REQ for the error
codes that apply to an erroneous DL_UNITDATA_REQ. In addition, the error
value DL_UNDELIVERABLE may be returned if the request was valid but for
some reason the DLS provider could not deliver the data unit (e.g. due to lack of
sufficient local buffering to store the data unit). There is, however, no guarantee
that such an error report will be generated for all undeliverable data units, since
connectionless data transfer is not a confirmed service.

errNo

conveys a POSIX errno. Valid if switch is false.

G.4.2.3.3 State.

The primitive is valid in STATE_IDLE.

G.4.2.3.4 New State.

The resulting state is unchanged.

G.4.2.3.5 Response.

N/A.

G.4.2.3.6 Originator.

This primitive is initiated by the DLS provider.

 G-44

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.2.3.7 Errors/Exceptions.

N/A.

G.4.3 acknowledged connectionless-mode service primitives.

Figure 19, Figure 20 and Figure 21are the type, Packet Building Block instantiations and
Provider and User class diagrams respectively for the connectionless data transfer service. The
DLS user implements the Provider interface and the DLS user implements the User interface.

RequestHeaderType
correlationID : unsigned long
destinationAddress : DLSAPAddressType
sourceAddress : DLSAPAddressType
priority : unsigned long
useAckServiceInMAC : boolean

<<CORBAStruct>>

IndicatorHeaderType
packetIndicator : PacketIndicatorType
destinationAddress : DLSAPAddressType
sourceAddress : DLSAPAddressType
priority : unsigned long
useAckServiceInMAC : boolean

<<CORBAStruct>>

PacketIndicatorType
PI_ONEWAY
PI_TWOWAY
PI_REPLY_UPDATE

<<CORBAEnum>>

<<uses>>

StatusType
STATUS_OK
STATUS_NO_SERVICE
STATUS_SDU_NOT_SUBMITTED
STATUS_SDU_NOT_REQUESTED
STATUS_INTERFACE_ERROR
STATUS_PROTOCOL_ERROR
STATUS_PERM_IMP_ERROR
STATUS_TEMP_UNAVAIL
STATUS_TEMP_IMP_ERROR

<<CORBAEnum>>

DLSAPAddressType
(from LLC)

<<CORBAStruct>>

<<uses>>
<<uses>>

ReplyHeaderType
correlationID : unsigned long
sourceAddress : DLSAPAddressType

<<CORBAStruct>>

<<uses>>

HeaderType
request : RequestHeaderType
reply : RequestHeaderType
replyUpdate : ReplyHeaderType

<<CORBAUnion>>

<<uses>>

<<uses>>

<<uses>>

Figure 19. Acknowledged Connectionless Class Diagram: Types

 G-45

JTRS-5000API
LLC Building Block

rev. 3.0
ControlType
PayloadType

Packet

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in ControlType, payload : in PayloadType) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(Enable : in boolean) : void
enableEmptySignal(Enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

(from Packet)

<<API Building Block>>

ProviderQueue
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in HeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : unsigned short
enableFlowControlSignals(Enable : in boolean) : void
enableEmptySignal(Enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>
UserQueue

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in IndicatorHeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in short) : unsigned short
enableFlowControlSignals(Enable : in boolean) : void
enableEmptySignal(Enable : in boolean) : void
setNumOfPriorityQueues(numofpriorities : in short) : void

<<Interface>>

<<instantiates>>

<<instantiates>>

OctetSequence
(from CF)

<<CORBATypedef>>

<<uses>>

<<uses>>

IndicatorHeaderType
<<CORBAStruct>>

Figure 20. Acknowledged Connectionless Class Diagram: Packet Building Block
Instantiations

 G-46

JTRS-5000API
LLC Building Block

rev. 3.0

ProviderQueue
<<Interface>>

PacketSignals
(from Packet)

<<Interface>>

Provider
<<Interface>>

UserQueue
<<Interface>>

User

pushStatus(correlationID : in unsigned long, status : in StatusType) : void
pushReplyStatus(correlationID : in unsigned long, txStatus : in StatusType, rxStatus : in StatusType) : void
pushReplyUpdateStatus(correlationID : in unsigned long, txStatus : in StatusType, rxStatus : in StatusType) : void
signalError(error : in PacketErrorType) : void

<<Interface>>

StatusType
<<CORBAEnum>>

Figure 21. Acknowledged Connectionless Class Diagram: Provider and User Interfaces

G.4.3.1 DL_DATA_ACK_REQ.

This request is passed to the Data Link provider to request that a SDU be sent to a peer DLS user
using acknowledged connectionless mode data unit transmission procedures.

G.4.3.1.1 Synopsis.

void pushPacket (

in octet priority,
in HeaderType control,
in CF::OctetSequence payload

);

G.4.3.1.2 Parameters.

priority

priority for queuing in the DLS provider. (0 is lowest priority)

control

 G-47

JTRS-5000API
LLC Building Block

rev. 3.0
control provides information other than user data and is of the following structure.

union HeaderType switch(PacketIndicatorType) {
case PI_ONEWAY: RequestHeaderType request;
case PI_TWOWAY: RequestHeaderType reply;
case PI_REPLY_UPDATE: ReplyHeaderType replyUpdate;
};

packetIndicatorType

indicates the type of packet. Must be set to PI_ONEWAY for this primitive
which indicates this is a packet that is unsolicited by the peer DLS provider and
no reply is expected.

request

holds the header information for a packet to be sent for which no reply is expected
and is of the following structure.

struct RequestHeaderType {
 unsigned long correlationID;
 DLSAPAddressType destinationAddress;
 DLSAPAddressType sourceAddress;
 unsigned long priority;
 boolean useAckServiceInMAC;
};

correlationID

Conveys a unique identifier which will be returned in the
DL_DATA_ACK_STATUS_IND primitive to allow the DLS User to
correlate the status to the appropriate DL_DATA_ACK_REQ primitive.

destinationAddress

conveys the DLSAP address of the destination DLS user. If the
destination user is implemented using this service, this address is the full
DLSAP address returned from the DL_BIND_REQ.

sourceAddress

conveys the DLSAP address of the source DLS user.

priority

indicates the priority value within the supported range for this particular
SDU.

useAckServiceInMAC

Specifies whether or not an acknowledge capability in the medium access
control sublayer is to be used for the data unit transmission.

 G-48

JTRS-5000API
LLC Building Block

rev. 3.0
payload

is a sequence of octets that represent the SDU. The amount of user data that may be
transferred in a single SDU is limited. This limit is conveyed by the DL_MAX_SDU
primitive.

G.4.3.1.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.1.4 New State.

The resulting state is unchanged.

G.4.3.1.5 Response.

If the request is erroneous, message DL_ERROR_ACK is returned, and the resulting state is
unchanged.

If the DLS Provider accepts the data for transmission, a DL_DATA_ACK_STATUS_IND is
returned. This indication will indicate the success or failure of the data transmission. Although
the exchange service is connectionless, in-sequence delivery is guaranteed for data sent by the
initiating station.

G.4.3.1.6 Originator.

This primitive is initiated by the DLS user.

G.4.3.1.7 Errors/Exceptions.

The following errors can be issued in a DL_ERROR_ACK primitive.

ERROR_BADADDR The destination DLSAP address information was
invalid or was in an incorrect format.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_NOT_SUPPORTED The primitive is known, but not supported by the DLS
provider.

ERROR_UNSUPPORTED Requested service or priority not supported by Provider
(Request with response at the Medium Access Control
sublayer).

ERROR_BAD_DATA The amount of data in the current SDU exceeded the
DLS provider’s SDU limit.

 G-49

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.2 DL_DATA_ACK_IND

Conveys one DLSDU from the DLS Provider to the DLS User. This primitive indicates the
arrival of a non-null, non-duplicate DLSDU from a peer Data Link User entity.

G.4.3.2.1 Synopsis.

void pushPacket (

in octet priority,
in IndicatorHeaderType control,
in CF::OctetSequence payload

);

G.4.3.2.2 Parameters.

priority

priority for queuing in the DLS user. (0 is lowest priority)

control

control provides information other than user data and is of the following structure.

struct IndicatorHeaderType {
 PacketIndicatorType packetIndicator;
 DLSAPAddressType destinationAddress;
 DLSAPAddressType sourceAddress;
 unsigned long priority;
 boolean useAckServiceInMAC;
};

packetIndicator

indicates the type of packet. Must be set to PI_ONEWAY for this primitive
which indicates this is a packet that has arrived unsolicited from a peer DLS
provider.

destinationAddress

conveys the DLSAP address of the destination DLS user. If the destination user
is implemented using this service, this address is the full DLSAP. It is the address
returned in the DL_BIND_REQ primitive.

sourceAddress

conveys the DLSAP address of the source DLS user.

priority

priority provided for the data unit transmission.

useAckServiceInMAC

Specifies whether or not an acknowledge capability in the medium access control
sublayer is to be used for the data unit transmission.

 G-50

JTRS-5000API
LLC Building Block

rev. 3.0
payload

is a sequence of octets that represent the SDU. The amount of user data that may be
transferred in a single SDU is limited. This limit is conveyed by the DL_MAX_SDU
primitive.

 .
G.4.3.2.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.2.4 New State.

The resulting state is unchanged.

G.4.3.2.5 Response.

N/A.

G.4.3.2.6 Originator.

This primitive is initiated by the DLS provider.

G.4.3.2.7 Errors/Exceptions.

N/A.

 G-51

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.3 DL_DATA_ACK_STATUS_IND

Conveys the results of the previous associated DL_DATA_ACK_REQ from the DLS Provider to
the DLS user.

G.4.3.3.1 Synopsis.

oneway void pushStatus (

in unsigned long correlationID,
in StatusType status

);

G.4.3.3.2 Parameters.

correlationID

conveys the unique identifier passed with the DL_DATA_ACK_REQ primitive, to allow
the DLS user correlate the status to the appropriate DL_DATA_ACK_REQ.

status

indicates the success or failure of the previous associated acknowledged connectionless-
mode data unit transmission request.

STATUS_OK Command accepted.

STATUS _ NO_SERVICE Unimplemented or inactivated service.

STATUS _ INTERFACE_ERROR LLC User Interface error

STATUS _PROTOCOL_ERROR Protocol error

STATUS _ PERM_IMP_ERROR Permanent implementation dependent
error

STATUS _ TEMP_UNAVAIL Resources temporarily unavailable.

STATUS _ TEMP_IMP_ERROR Temporary implementation dependent
error.

G.4.3.3.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.3.4 New State.

The resulting state is unchanged.

G.4.3.3.5 Response.

N/A.

G.4.3.3.6 Originator.

This primitive is initiated by the DLS provider.

G.4.3.3.7 Errors/Exceptions.

N/A.

 G-52

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.4 DL_REPLY_REQ

This request primitive is passed to the DLS provider by the DLS user to request that a SDU be
returned from a peer DLS provider or that SDUs be exchanged between stations using
acknowledged connectionless mode data unit exchange procedures.

G.4.3.4.1 Synopsis.

void pushPacket (

in octet priority,
in RequestHeaderType control,
in CF::OctetSequence payload

);

G.4.3.4.2 Parameters.

priority

priority for queuing in the DLS provider. (0 is lowest priority)

control

control provides information other than user data and is of the following structure.

union HeaderType switch(PacketIndicatorType) {
case PI_ONEWAY: RequestHeaderType request;
case PI_TWOWAY: RequestHeaderType replyRequest;
case PI_REPLY_UPDATE: ReplyHeaderType replyUpdate;
};

packetIndicatorType

indicates the type of packet. Must be set to PI_TWOWAY for this primitive
which indicates this is a packet for which a reply is expected from the peer DLS
provider.

replyRequest

holds the header information for a packet to be sent for which a reply is expected
and is of the following structure.

struct RequestHeaderType {
 unsigned long correlationID;
 DLSAPAddressType destinationAddress;
 DLSAPAddressType sourceAddress;
 unsigned long priority;
 boolean useAckServiceInMAC;
};

 G-53

JTRS-5000API
LLC Building Block

rev. 3.0
correlationID

Conveys a unique identifier which will be returned in the DL_
REPLY_STATUS_IND primitive to allow the DLS User to correlate the
status to the appropriate DL_REPLY_REQ primitive.

destinationAddress

conveys the DLSAP address of the destination DLS user. If the
destination user is implemented using this service, this address is the full
DLSAP address returned from the DL_BIND_REQ.

sourceAddress

conveys the DLSAP address of the source DLS user.

priority

indicates the priority value within the supported range for this particular
SDU.

useAckServiceInMAC

Specifies whether or not an acknowledge capability in the medium access
control sublayer is to be used for the data unit transmission.

payload

is a sequence of octets that represent the SDU. The amount of user data that may be
transferred in a single SDU is limited. This limit is conveyed by the DL_MAX_SDU
primitive.

G.4.3.4.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.4.4 New State.

The resulting state is unchanged.

G.4.3.4.5 Response.

If the request is erroneous, message DL_ERROR_ACK is returned, and the resulting state is
unchanged.

If the DLS Provider accepts the data for transmission, a DL_REPLY_STATUS_IND is returned.
This indication will indicate the success or failure of the data transmission. Although the
exchange service is connectionless, in-sequence delivery is guaranteed for data sent by the
initiating station.

G.4.3.4.6 Originator.

This primitive is initiated by the DLS user.

G.4.3.4.7 Errors/Exceptions.

The following errors can be issued in a DL_ERROR_ACK primitive

 G-54

JTRS-5000API
LLC Building Block

rev. 3.0
ERROR_BADADDR The destination DLSAP address information was

invalid or was in an incorrect format.

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_NOT_SUPPORTED The primitive is known, but not supported by the DLS
provider.

ERROR_UNSUPPORTED Requested service or priority not supported by Provider
(Request with response at the Medium Access Control
sublayer).

ERROR_BAD_DATA The amount of data in the current SDU exceeded the
DLS provider’s SDU limit.

 G-55

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.5 DL_REPLY_IND

This primitive is the service indication primitive for the acknowledged connectionless-mode data
unit exchange service. It is passed from the DLS provider to the DLS user to indicate either a
successful request of a SDU from the peer data link user entity, or exchange of SDUs with a peer
data link user entity.

G.4.3.5.1 Synopsis.

void pushPacket (

in octet priority,
in IndicatorHeaderType control,
in CF::OctetSequence payload

);

G.4.3.5.2 Parameters.

priority

priority for queuing in the DLS user. (0 is lowest priority)

control

control provides information other than user data and is of the following structure.

struct IndicatorHeaderType {
 PacketIndicatorType packetIndicator;
 DLSAPAddressType destinationAddress;
 DLSAPAddressType sourceAddress;
 unsigned long priority;
 boolean useAckServiceInMAC;
};

packetIndicator

indicates the type of packet. Must be set to PI_TWOWAY for this primitive.

destinationAddress

conveys the DLSAP address of the destination DLS user. If the destination user
is implemented using this service, this address is the full DLSAP. It is the address
returned in the DL_BIND_REQ primitive.

sourceAddress

conveys the DLSAP address of the source DLS user.

priority

priority provided for the data unit transmission.

useAckServiceInMAC

Specifies whether or not an acknowledge capability in the medium access control
sublayer is to be used for the data unit transmission.

 G-56

JTRS-5000API
LLC Building Block

rev. 3.0
payload

is a sequence of octets that represent the SDU. The amount of user data that may be
transferred in a single SDU is limited. This limit is conveyed by the DL_MAX_SDU
primitive.

G.4.3.5.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.5.4 New State.

The resulting state is unchanged.

G.4.3.5.5 Response.

N/A.

G.4.3.5.6 Originator.

This primitive is initiated by the DLS provider.

G.4.3.5.7 Errors/Exceptions.

N/A.

 G-57

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.6 DL_REPLY_STATUS_IND

Conveys the results of the previous associated DL_REPLY_REQ from the DLS provider to the
DLS user.

G.4.3.6.1 Synopsis.

oneway void pushReplyStatus (

in unsigned long correlationID,
in StatusType status

);

G.4.3.6.2 Parameters.

correlationID

conveys the unique identifier passed with the DL_REPLY_REQ primitive, to allow the
DLS user correlate the status to the appropriate DL_REPLY_REQ.

txStatus

indicates the success or failure of the transmission portion of the previous associated
acknowledged connectionless-mode data unit transmission request.

STATUS_OK Command accepted.

STATUS_NO_SERVICE Unimplemented or inactivated service.

STATUS_INTERFACE_ERROR LLC User Interface error

STATUS_PROTOCOL_ERROR Protocol error

STATUS_PERM_IMP_ERROR Permanent implementation dependent
error

STATUS _TEMP_UNAVAIL Resources temporarily unavailable.

STATUS_TEMP_IMP_ERROR Temporary implementation dependent
error.

rxStatus

indicates the success or failure of the reception portion of the previous associated
acknowledged connectionless-mode data unit exchange request.

STATUS_OK Response DLSDU present.

STATUS_NO_SERVICE Unimplemented or inactivated service.

STATUS_SDU_NOT_SUBMITTED Response DLSDU never submitted.

STATUS_SDU_NOT_REQUESTED Response DLSDU not requested.

STATUS _ INTERFACE_ERROR LLC User Interface error

STATUS _ PROTOCOL_ERROR Protocol error

 G-58

JTRS-5000API
LLC Building Block

rev. 3.0
STATUS _ PERM_IMP_ERROR Permanent implementation dependent

error

STATUS _ TEMP_UNAVAIL Resources temporarily unavailable.

STATUS _ TEMP_IMP_ERROR Temporary implementation dependent
error.

G.4.3.6.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.6.4 New State.

The resulting state is unchanged.

G.4.3.6.5 Response.

N/A.

G.4.3.6.6 Originator.

This primitive is initiated by the DLS provider.

G.4.3.6.7 Errors/Exceptions.

N/A.

 G-59

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.7 DL_REPLY_UPDATE_REQ.

Conveys a SDU to the DLS provider from the DLS user to be held by the DLS provider and sent
out at a later time when requested to do so by the peer DLS provider.

G.4.3.7.1 Synopsis.

void pushPacket (

in ReplyHeaderType control,
in CF::OctetSequence payload

);

G.4.3.7.2 Parameters.

control

control provides information other than user data and is of the following structure.

union HeaderType switch(PacketIndicatorType) {
case PI_ONEWAY: RequestHeaderType request;
case PI_TWOWAY: RequestHeaderType reply;
case PI_REPLY_UPDATE: ReplyHeaderType replyUpdate;
};

packetIndicatorType

indicates the type of packet. Must be set to PI_REPLY_UPDATE for this
primitive which indicates this is a packet that is to be held by the DLS provider
until requested to be sent by a peer DLS user.

replyUpdate

holds the header information for the reply update.

struct ReplyHeaderType {
 unsigned long correlationID;
 DLSAPAddressType sourceAddress;
};

correlationID

Conveys a unique identifier which will be returned in the DL_
REPLY_UPDATE_ IND primitive to allow the DLS User to correlate the
status to the appropriate DL_REPLY_UPDATE_REQ primitive.

sourceAddress

conveys the DLSAP address of the source DLS user.

 G-60

JTRS-5000API
LLC Building Block

rev. 3.0
payload

is a sequence of octets that represent the SDU. The amount of user data that may be
transferred in a single SDU is limited. This limit is conveyed by the DL_MAX_SDU
primitive.

 .
G.4.3.7.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.7.4 New State.

The resulting state is unchanged.

G.4.3.7.5 Response.

If the request is erroneous, message DL_ERROR_ACK is returned, and the resulting state is
unchanged.

If the DLS Provider accepts the data for transmission, a DL_REPLY_ UPDATE_ STATUS_IND
is returned. This indication will indicate the success or failure of the data transmission.
Although the exchange service is connectionless, in-sequence delivery is guaranteed for data sent
by the initiating station.

G.4.3.7.6 Originator.

This primitive is initiated by the DLS user.

G.4.3.7.7 Errors/Exceptions.

The following errors can be issued in a DL_ERROR_ACK primitive

ERROR_INVALID_STATE The primitive was issued from an invalid state.

ERROR_UNSUPPORTED Requested service or priority not supported by Provider
(Request with response at the Medium Access Control
sublayer).

ERROR_BAD_DATA The amount of data in the current SDU exceeded the
DLS provider’s SDU limit.

 G-61

JTRS-5000API
LLC Building Block

rev. 3.0
G.4.3.8 DL_REPLY_UPDATE_STATUS_IND.

Conveys the results of the previous associated DL_REPLY_REQ from the DLS provider to the
DLS user.

G.4.3.8.1 Synopsis.

oneway void pushReplyUpdateStatus (

in unsigned long correlationID,
in StatusType status

);

G.4.3.8.2 Parameters.

correlationID

conveys the unique identifier passed with the DL_REPLY_UPDATE_REQ primitive, to
allow the DLS user correlate the status to the appropriate DL_REPLY_UPDATE_REQ.

txStatus

indicates the success or failure of the transmission portion of the previous associated
acknowledged connectionless-mode data unit transmission request.

STATUS_OK Command accepted.

STATUS_NO_SERVICE Unimplemented or inactivated service.

STATUS_INTERFACE_ERROR LLC User Interface error

STATUS_PROTOCOL_ERROR Protocol error

STATUS_PERM_IMP_ERROR Permanent implementation dependent
error

STATUS _TEMP_UNAVAIL Resources temporarily unavailable.

STATUS_TEMP_IMP_ERROR Temporary implementation dependent
error.

rxStatus

indicates the success or failure of the reception portion of the previous associated
acknowledged connectionless-mode data unit exchange request.

STATUS_OK Response DLSDU present.

STATUS_NO_SERVICE Unimplemented or inactivated service.

STATUS_SDU_NOT_SUBMITTED Response DLSDU never submitted.

STATUS_SDU_NOT_REQUESTED Response DLSDU not requested.

STATUS _ INTERFACE_ERROR LLC User Interface error

STATUS _ PROTOCOL_ERROR Protocol error

 G-62

JTRS-5000API
LLC Building Block

rev. 3.0
STATUS _ PERM_IMP_ERROR Permanent implementation dependent

error

STATUS _ TEMP_UNAVAIL Resources temporarily unavailable.

STATUS _ TEMP_IMP_ERROR Temporary implementation dependent
error.

G.4.3.8.3 State.

The primitive is valid in STATE_IDLE.

G.4.3.8.4 New State.

The resulting state is unchanged.

G.4.3.8.5 Response.

N/A.

G.4.3.8.6 Originator.

This primitive is initiated by the DLS provider.

G.4.3.8.7 Errors/Exceptions.

N/A.

G.5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.
TBD.

G.6 PRECEDENCE OF SERVICE PRIMITIVES.
Precedence of primitives is left to service definitions of full APIs.

G.7 SERVICE USER GUIDELINES.
Service user guidelines are left to service definitions of full APIs.

G.8 SERVICE PROVIDER-SPECIFIC INFORMATION.
This section will be filled in for complete APIs that inherit this building block.

 G-63

JTRS-5000API
LLC Building Block

rev. 3.0

G.9 IDL.
//Source file: llc.idl

#ifndef __LLC_DEFINED
#define __LLC_DEFINED

/* CmIdentification
%X% %Q% %Z% %W% */

#include "packet.idl"
#include "cf.idl"

module LLC {

enum ServiceErrorType {
ERROR_BAD_SAP,
ERROR_BAD_ADDRESS,
ERROR_NO_ACCESS,
ERROR_INVALID_STATE,
ERROR_BAD_CORRELATION,
ERROR_BAD_DATA,
ERROR_UNSUPPORTED,
ERROR_NOT_ENABLED,
ERROR_TOO_MANY,
ERROR_BOUND,
ERROR_NO_AUTO,
ERROR_NO_XIDAUTO,
ERROR_NO_TESTAUTO,
ERROR_NO_ADDRESS,
ERROR_BAD_QOS_PARAMETERS,
ERROR_UNDELIVERABLE

};

union PacketErrorType switch(boolean) {
case TRUE: ServiceErrorType usageError;
case FALSE: unsigned long errNo;

};

enum BindType {
BIND_PEER,
BIND_HIERARCHICAL

};

struct DLSAPAddressType {
unsigned long sap;
CF::OctetSequence address;

};

module Connectionless {

struct RequestHeaderType {
DLSAPAddressType destinationAddress;
unsigned long priority;

};

 G-64

JTRS-5000API
LLC Building Block

rev. 3.0

struct IndicatorHeaderType {
DLSAPAddressType destinationAddress;
DLSAPAddressType sourceAddress;
boolean isGroupAddress;

};

interface ProviderQueue {
/* The maxPacketSize is a read only attribute set by the

Packet Server and the get operation reports back the maximum number of
traffic units allowed in one pushPacket call. */

readonly attribute unsigned short maxPayloadSize;
readonly attribute unsigned short minPayloadSize;

/* This operation is used to push Client data to the Server
with a Control element and a Payload element.

@roseuid 39BE5AAC0384 */
oneway void pushPacket (

in octet priority,
in RequestHeaderType control,
in CF::OctetSequence payload
);

/* The operation returns the space available in the Servers
queue(s) in terms of the implementers defined Traffic Units.

@roseuid 39BE5AAC0398 */
unsigned long spaceAvailable (

in octet priorityQueueID
);

/* This operation allows the client to turn the High
Watermark Signal ON and OFF.

@roseuid 39BE5AAC03A3 */
oneway void enableFlowControlSignals (

in boolean Enable
);

/* This operation allows the client to turn the Empty Signal ON and OFF.
@roseuid 39BE5AAC03B6 */
oneway void enableEmptySignal (

in boolean Enable
);

/*
@roseuid 39BE5AAC03C1 */
oneway void setNumOfPriorityQueues (

in octet numOfPriorities
);

};

interface UserQueue {
/* The maxPacketSize is a read only attribute set by the

Packet Server and the get operation reports back the maximum number of
traffic units allowed in one pushPacket call. */

 G-65

JTRS-5000API
LLC Building Block

rev. 3.0

readonly attribute unsigned short maxPayloadSize;
readonly attribute unsigned short minPayloadSize;

/* This operation is used to push Client data to the Server
with a Control element and a Payload element.

@roseuid 39BE714B0359 */
oneway void pushPacket (

in octet priority,
in IndicatorHeaderType control,
in CF::OctetSequence payload
);

/* The operation returns the space available in the Servers
queue(s) in terms of the implementers defined Traffic Units.

@roseuid 39BE714B036E */
unsigned short spaceAvailable (

in octet priorityQueueID
);

/* This operation allows the client to turn the High
Watermark Signal ON and OFF.

@roseuid 39BE714B0381 */
oneway void enableFlowControlSignals (

in boolean Enable
);

/* This operation allows the client to turn the Empty Signal ON and OFF.
@roseuid 39BE714B038B */
oneway void enableEmptySignal (

in boolean Enable
);

/*
@roseuid 39BE714B039F */
oneway void setNumOfPriorityQueues (

in octet numofpriorities
);

};

interface Provider : Packet::PacketSignals, ProviderQueue {
};

interface User : UserQueue, Packet::PacketSignals {
/*
@roseuid 39C616CD03A6 */
oneway void signalError (

in DLSAPAddressType destinationAddress,
in PacketErrorType error
);

};

};

 G-66

JTRS-5000API
LLC Building Block

rev. 3.0
module LocalManagement {

interface Provider;

enum ServiceModeType {
SM_CODLS,
SM_CLDLS,
SM_ACLDLS

};

enum StateType {
STATE_UNATTACHED,
STATE_UNBOUND,
STATE_IDLE,
STATE_UDQOS_PENDING,
STATE_OUTCON_PENDING,
STATE_INCON_PENDING,
STATE_CONN_RES_PENDING,
STATE_DATAXFER,
STATE_USER_RESET_PENDING,
STATE_PROV_RESET_PENDING,
STATE_RESET_RES_PENDING,
STATE_DISCON_PENDING_OUTCON,
STATE_DISCON_PENDING_USER_RESET,
STATE_DISCON_PENDING_DATAXFER,
STATE_DISCON_PENDING_PROV_RESET

};

struct InfoType {
StateType currentState;
sequence <ServiceModeType> mode;
CF::OctetSequence broadcastAddress;
DLSAPAddressType address;

};

interface User {
attribute string connectionID;

};

struct BindResponseType {
DLSAPAddressType sapAddress;
unsigned long maxConnectionInd;
boolean autoXID;
boolean autoTest;

};

enum PromiscuousModeType {
PM_PHYSICAL,
PM_SAP,
PM_MULTI

};

struct BindRequestType {
unsigned long sap;
unsigned long maxConnectionInd;
ServiceModeType serviceMode;

 G-67

JTRS-5000API
LLC Building Block

rev. 3.0
boolean isListenStream;
boolean autoXID;
boolean autoTest;

};

interface Provider {
exception InvalidPort {
};

exception ServiceUsageError {
ServiceErrorType qualifier;

};

exception SystemError {
unsigned long errNo;

};

readonly attribute unsigned long maxTU;
readonly attribute unsigned long minTU;

/*
@roseuid 39B7AC4E00BA */
void getInfo (

in string connectionID,
out InfoType info
)
raises (InvalidPort,SystemError);

/*
@roseuid 39B8EE8C008E */
void bind (

in string connectionID,
in BindRequestType bindReq,
out BindResponseType bindResp
)
raises (InvalidPort,ServiceUsageError,SystemError);

/*
@roseuid 39B929B60354 */
void unbind (

in string connectionID
)
raises (InvalidPort,ServiceUsageError,SystemError);

/*
@roseuid 39B92A5301D3 */
void subsBind (

in string connectionID,
inout DLSAPAddressType address
)
raises (InvalidPort,ServiceUsageError,SystemError);

/*
@roseuid 39B92B0E039F */
void subsUnbind (

in string connectionID,

 G-68

JTRS-5000API
LLC Building Block

rev. 3.0
in DLSAPAddressType address
)
raises (InvalidPort,ServiceUsageError,SystemError);

/*
@roseuid 39B92B6201F1 */
void enableMulticast (

in string connectionID,
in CF::OctetSequence address
)
raises (InvalidPort,ServiceUsageError,SystemError);

/*
@roseuid 39B92C820213 */
void disableMulticast (

in string connectionID,
in CF::OctetSequence address
)
raises (InvalidPort,ServiceUsageError,SystemError);

/*
@roseuid 39B92D5B019D */
void enablePromiscuousMode (

in string connectionID,
in PromiscuousModeType level
)
raises (InvalidPort,ServiceUsageError,SystemError);

/*
@roseuid 39B92D7502E5 */
void disablePromiscuousMode (

in string connectionID,
in PromiscuousModeType level
)
raises (InvalidPort,ServiceUsageError,SystemError);

};

};

module AckConnectionless {

struct RequestHeaderType {
unsigned long correlationID;
DLSAPAddressType destinationAddress;
DLSAPAddressType sourceAddress;
unsigned long priority;
boolean useAckServiceInMAC;

};

enum PacketIndicatorType {
PI_ONEWAY,
PI_TWOWAY,
PI_REPLY_UPDATE

};

 G-69

JTRS-5000API
LLC Building Block

rev. 3.0
struct IndicatorHeaderType {

PacketIndicatorType packetIndicator;
DLSAPAddressType destinationAddress;
DLSAPAddressType sourceAddress;
unsigned long priority;
boolean useAckServiceInMAC;

};

interface UserQueue {
/* The maxPacketSize is a read only attribute set by the

Packet Server and the get operation reports back the maximum number of
traffic units allowed in one pushPacket call. */

attribute unsigned short maxPayloadSize;
attribute unsigned short minPayloadSize;

/* This operation is used to push Client data to the Server
with a Control element and a Payload element.

@roseuid 39BFC4CF0171 */
void pushPacket (

in octet priority,
in IndicatorHeaderType control,
in CF::OctetSequence payload
);

/* The operation returns the space available in the Servers
queue(s) in terms of the implementers defined Traffic Units.

@roseuid 39BFC4CF0185 */
unsigned short spaceAvailable (

in short priorityQueueID
);

/* This operation allows the client to turn the High
Watermark Signal ON and OFF.

@roseuid 39BFC4CF0199 */
void enableFlowControlSignals (

in boolean Enable
);

/* This operation allows the client to turn the Empty Signal ON and OFF.
@roseuid 39BFC4CF01A3 */
void enableEmptySignal (

in boolean Enable
);

/*
@roseuid 39BFC4CF01AE */
void setNumOfPriorityQueues (

in short numofpriorities
);

};

enum StatusType {
STATUS_OK,
STATUS_NO_SERVICE,

 G-70

JTRS-5000API
LLC Building Block

rev. 3.0
STATUS_SDU_NOT_SUBMITTED,
STATUS_SDU_NOT_REQUESTED,
STATUS_INTERFACE_ERROR,
STATUS_PROTOCOL_ERROR,
STATUS_PERM_IMP_ERROR,
STATUS_TEMP_UNAVAIL,
STATUS_TEMP_IMP_ERROR

};

interface User : Packet::PacketSignals, UserQueue {
/*
@roseuid 39BFF5DF0013 */
oneway void pushStatus (

in unsigned long correlationID,
in StatusType status
);

/*
@roseuid 39CD02130382 */
oneway void pushReplyStatus (

in unsigned long correlationID,
in StatusType txStatus,
in StatusType rxStatus
);

/*
@roseuid 39CD0933005A */
oneway void pushReplyUpdateStatus (

in unsigned long correlationID,
in StatusType txStatus,
in StatusType rxStatus
);

/*
@roseuid 39C645A30310 */
oneway void signalError (

in PacketErrorType error
);

};

struct ReplyHeaderType {
unsigned long correlationID;
DLSAPAddressType sourceAddress;

};

union HeaderType switch(PacketIndicatorType) {
case PI_ONEWAY: RequestHeaderType request;
case PI_TWOWAY: RequestHeaderType reply;
case PI_REPLY_UPDATE: ReplyHeaderType replyUpdate;

};

interface ProviderQueue {
/* The maxPacketSize is a read only attribute set by the

Packet Server and the get operation reports back the maximum number of
traffic units allowed in one pushPacket call. */

 G-71

JTRS-5000API
LLC Building Block

rev. 3.0

 G-72

readonly attribute unsigned short maxPayloadSize;
readonly attribute unsigned short minPayloadSize;

/* This operation is used to push Client data to the Server
with a Control element and a Payload element.

@roseuid 39BFC2F800C9 */
void pushPacket (

in octet priority,
in HeaderType control,
in CF::OctetSequence payload
);

/* The operation returns the space available in the Servers
queue(s) in terms of the implementers defined Traffic Units.

@roseuid 39BFC2F800F2 */
unsigned short spaceAvailable (

in octet priorityQueueID
);

/* This operation allows the client to turn the High
Watermark Signal ON and OFF.

@roseuid 39BFC2F80105 */
void enableFlowControlSignals (

in boolean Enable
);

/* This operation allows the client to turn the Empty Signal ON and OFF.
@roseuid 39BFC2F80110 */
void enableEmptySignal (

in boolean Enable
);

/*
@roseuid 39BFC2F80123 */
void setNumOfPriorityQueues (

in octet numOfPriorities
);

};

interface Provider : ProviderQueue, Packet::PacketSignals {
};

};

};

#endif

G.10 UML.

	INTRODUCTION.
	Overview.
	Service Layer Description.
	Modes of Service.
	Connection Oriented.
	Local Management.
	Connection Establishment.
	Data Transfer.
	Connection Release.

	Connectionless Mode.
	Acknowledged Connectionless Mode.

	Service States.
	Referenced Documents.

	UUID.
	SERVICES.
	Local Management services.
	Information Reporting Service.
	Bind Service.

	SERVICE PRIMITIVES.
	Local management service primitives.
	PPA Initialization/De-initialization.
	Stream Connection.
	DL_MAX_SDU_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_MIN_SDU_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_INFO_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_BIND_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_UNBIND_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_SUBS_BIND_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_SUBS_UNBIND_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_ENABMULTI_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_DISABMULTI_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_PROMISCON_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_PROMISCOFF_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions

	connectionless mode service primitives.
	DL_UNITDATA_REQUEST.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_UNITDATA_IND.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_UDERROR_IND.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	acknowledged connectionless-mode service primitives.
	DL_DATA_ACK_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_DATA_ACK_IND
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_DATA_ACK_STATUS_IND
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_REPLY_REQ
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_REPLY_IND
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_REPLY_STATUS_IND
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_REPLY_UPDATE_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	DL_REPLY_UPDATE_STATUS_IND.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.
	PRECEDENCE OF SERVICE PRIMITIVES.
	SERVICE USER GUIDELINES.
	SERVICE PROVIDER-SPECIFIC INFORMATION.
	IDL.
	UML.

